Proton repulsion and thallium displacement in Tl^{2+}-doped $\mathrm{RbH}_{2} \mathrm{AsO}_{4}$ investigated by electron paramagnetic resonance

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys.: Condens. Matter 24209
(http://iopscience.iop.org/0953-8984/2/18/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 10/05/2010 at 22:07

Please note that terms and conditions apply.

Proton repulsion and thallium displacement in T^{2+}-doped $\mathrm{RbH}_{2} \mathrm{AsO}_{4}$ investigated by electron paramagnetic resonance

A J M Neves, G M Ribeiro, A S Chaves and R Gazzinelli
Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, CP 702, CEP 30161, Belo Horizonte MG, Brazil

Received 29 November 1989

Abstract

The electron paramagnetic resonance of the paramagnetic centre Tl^{2} in the Rb^{+} site in $\mathrm{RbH}_{2} \mathrm{AsO}_{4}$ was investigated in the temperature range $25-149 \mathrm{~K}$. Similarly to what has already been observed in other members of the $\mathrm{KH}_{2} \mathrm{PO}_{4}(\mathrm{KDP})$ family, in the ferroelectric phase the symmetry of the spectrum, at higher temperatures, is consistent with the C_{2} symmetry of the Rb^{+}site, whereas at low temperatures it changes to C_{1}. These observations support the general proposition that in the KDP family the Tl^{2+} centre causes, at low temperatures, an inversion of the Slater configurations for the protons in such a way that only one proton is connected to the neighbouring AsO_{4} group. The present study shows evidence, at low temperatures, of additional structures in the spectrum, which strongly suggest a superhyperfine interaction of the Tl^{2+} centre with one neighbouring proton and one neighbouring ${ }^{35} \mathrm{Rb}$ nucleus. This gives important additional support to the idea of inverted Slater configurations and besides indicates that proton repulsion is accompanied by Tl^{2+} displacement.

1. Introduction and theory

The Tl^{+}ion isomorphously replaces the cation in crystals of the $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (KDP) family, during growth by solution, and can subsequently be converted to Tl^{2+} by x -ray irradiation at liquid-nitrogen temperature [1]. This impurity centre has interesting properties as a paramagnetic probe and has been used to observe phase transitions in the KDP family. The hyperfine interaction is exceptionally large-of the order of 100 GHz -and small changes in its value result in significant changes in the spectra. Therefore, the electron spin resonance (ESR) spectra are very sensitive to local changes. The position of the lines in a magnetic-field sweep is far from $g=2$, making it possible to identify easily the electron paramagnetic resonance (EPR) spectrum. Both isotopes ${ }^{203} \mathrm{Tl}$ and ${ }^{205} \mathrm{Tl}$ have almost equal magnetic moments, and therefore the respective EPR lines are not resolved, resulting in a very simple spectrum.

The EPR spectra of Tl^{2+} may be described by the spin Hamiltonian

$$
\begin{equation*}
\mathscr{H}=H \cdot \mathbf{g} \cdot S+S . A . I \tag{1}
\end{equation*}
$$

where $S=\frac{1}{2}$ and $I=\frac{1}{2}$ for both Tl isotopes. On account of the high hyperfine interaction ($A \sim 100 \mathrm{GHz}$), at microwave frequencies of about 9 GHz two transitions are observed,

Figure 1. Projection of the structure of $\mathrm{RbH}_{2} \mathrm{AsO}_{4}$ in the $a b$ plane. The heavy full line is the contour of the $\overline{4} 2 d$ unit cell. The As^{5+} ions, not shown in the figure, are at the centre of the O^{2-} tetrahedra and the Rb^{+}ions, also omitted in the figure, are displaced by $\left(0,0, \frac{1}{2}\right)$ from the As^{5+} positions. The arrows indicate the ordering of the protons in a $+z$ (pointing out of the page) ferroelectric domain. Numbers indicate the z positions of the ions in units of $c / 8$. A Tl^{2+} centre may be supposed to substitute a Rb^{+}ion at the centre of the unit cell, then the y axis of the defect labelled A_{+}^{\prime} connects the defect to the b proton at the lower right side.
corresponding to $\left(F=1, m_{F}=-1\right) \rightarrow\left(F=1, m_{F}=0\right)$ and $\left(F=1, m_{F}=1\right) \rightarrow(F=1$, $m_{F}=0$), where $F=I+S$. The two other allowed transitions are not observed.
$\mathrm{RbH}_{2} \mathrm{AsO}_{4}$ has a phase transition at 110 K from a high-temperature paraelectric phase to a low-temperature ferroelectric phase. As shown in figure 1, there are two Rb^{+} sites per unit cell, which will be denoted by A and B.

In the paraelectric phase the crystal belongs to the tetragonal $\mathrm{I} \overline{4} 2 d$ space group. The two sites have symmetry S_{4}, and consequently the Tl^{2+} ions in these sites are magnetically equivalent and yield just one line in the EPR spectrum, for each transition. The spectrum is formed by a pair of lines, corresponding to the observed transitions, and is isotropic in the plane $a b$.

In the ferroelectric phase, the crystal belongs to the orthorhombic $\mathrm{F} d d 2$ space group and the symmetry of the Rb^{+}sites is C_{2}. Owing to the existence of two ferroelectric domains, there will be four magnetically inequivalent centres $\mathrm{A}_{+}, \mathrm{A}_{-}, \mathrm{B}_{+}$and B_{-}, where the subscripts refer to the two ferroelectric domains. If the substitutional Tl^{2+} keeps the symmetry of the Rb^{+}site, four lines are expected for each transition, for a general
direction of the magnetic field. If the symmetry of the Tl^{2+} centre is lower $\left(\mathrm{C}_{1}\right)$, there are eight magnetically inequivalent centres, $\mathrm{A}_{+}^{\prime}, \mathrm{A}_{+}^{\prime \prime}, \mathrm{B}_{+}^{\prime}, \mathrm{B}_{+}^{\prime \prime}, \mathrm{A}_{-}^{+}, \mathrm{A}_{-}^{\prime \prime}, \mathrm{B}_{-}^{\prime}$ and $\mathrm{B}_{+}^{\prime \prime}$, where the superscripts distinguish centres that are transformed into each other by a C_{2} axis along the c axis of the crystal.

The EPR spectra of the Tl^{2+} ion in crystals of the KDP family show two patterns in the ferroelectric phase-a high-temperature pattern corresponding to defect centres with symmetry C_{2}, and a low-temperature pattern corresponding to defect centres with symmetry C_{1} [2]. At intermediate temperatures both patterns are observed.

To explain these experimental results, it has been proposed [3] that the protonthallium interaction creates a temperature-dependent configurational potential with three minima. The central minimum corresponds to the normal Slater configuration with two near protons and two far protons around the AsO_{4}^{4-} radical. The external minima correspond to defective Slater configurations with one near proton and three far protons. Below a certain temperature T, this last configuration, which has symmetry C_{1}, is stable and the other, with symmetry C_{2}, is unstable. At T^{*} the situation is reversed. Around T^{*} the three wells of the configurational potential have the same depth and both defects may be observed simultaneously.

There has been a suggestion $[4,5]$ that the off-centre displacement of the Tl^{2+} impurity is important for the explanation of the additional local lowering of symmetry at low temperatures ($T<T^{*}$). The study of $\mathrm{RbH}_{2} \mathrm{AsO}_{4}$ was undertaken to verify the generality of the three-well model in the KDP family as well as to confront the two models-proton or Tl^{2+} displacement. In this work it has been observed that the changes of the EPR spectra at T^{*} and T_{c} are similar to the changes observed in other members of the family. Besides, the superhyperfine (SHF) interaction observed in $\mathrm{RbH}_{2} \mathrm{AsO}_{4}$ adds new arguments in favour of proton displacement and suggests that the Tl^{2+} ion may suffer a displacement simultaneously with the proton.

2. Results and discussion

The $\mathrm{RbH}_{2} \mathrm{AsO}_{4}$ crystals, grown by slow evaporation of a solution containing approximately $2 \mathrm{~mol} . \%$ of Tl^{+}, were irradiated at 77 K with x-rays ($75 \mathrm{kV}, 15 \mathrm{~mA}$) for 3 h . The Tl^{2+} ions thus formed are destroyed at 250 K .

The angular dependence of the EPR spectra of Tl^{2+} was investigated in the paraelectric phase (149 K) and in the ferroelectric phase (25 and 100 K). They are similar to the angular dependences obtained by us for other members of the KDP family and reported previously $[2,3,6-8]$. The angular dependence at 25 K is shown in figure 2, and according to the symmetry arguments presented above demonstrates that the Tl^{2+} centre destroys the C_{2} axis of the Rb^{+}site. In fact, it is possible to show that if the C_{2} axis of the site is preserved, the centres $\mathrm{A}_{+}^{\prime}, \mathrm{A}_{+}^{\prime \prime}, \mathrm{B}_{-}^{\prime}$ and $\mathrm{B}_{-}^{\prime \prime}$ are magnetically equivalent in the plane $a c$ and should yield just one line (similarly $\mathrm{A}_{-}^{\prime}, \mathrm{A}_{-}^{\prime \prime}, \mathrm{B}_{+}^{\prime}$ and $\mathrm{B}_{+}^{\prime \prime}$ would yield one line).

The g and A tensors, obtained by fitting the angular variations to the spin Hamiltonian (equation (1)), are given in table 1. It can be seen that the principal axes of the tensors are along the directions of the crystal axes in the paraelectric phase and are displaced from these directions in the ferroelectric phase.

In order to discuss the role of the bonding protons in the lowering of the symmetry, they are classified into two groups. As can be seen in figure 1, each Rb^{+}ion has eight neighbouring protons: four connect an AsO_{4} group just above or below the K^{+}ion to a lateral AsO_{4} group and will be labelled a ; the other four, labelled b , connect two AsO_{4}

Figure 2. Angular dependence of the EPR spectra of $\mathrm{RbH}_{2} \mathrm{AsO}_{4}: \mathrm{Tl}^{2+}$ at 25 K and 9248 MHz . The spectra correspond to the defect with symmetry C_{1}. At 25 K the lines corresponding to the $\mathrm{C}_{2 z}$ symmetric defect are very faint and are not shown. Only the angular dependence of the centre labelled $\mathrm{A}^{\prime}+$ was adjusted to the experimental points, the other continuous lines were obtained by symmetry operations. The arrows show the directions on which the SHF structure (figures 4 and 5) and the temperature dependence of polarisation
groups that are lateral with respect to the Rb^{+}ion. Protons a and b are at almost the same distance from the site of Rb^{+}, but protons b are a little nearer.

Table 1 shows that in the ferroelectric phase the x axis of the g and \boldsymbol{A} tensors is only 11° off the direction that connects the Rb^{+}site to the proton. This kind of result has been observed by us in all crystals of the KDP family examined, except $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{4}[7]-$ namely $\mathrm{KH}_{2} \mathrm{PO}_{4}[2,3], \mathrm{KD}_{2} \mathrm{PO}_{4}[3], \mathrm{KH}_{2} \mathrm{AsO}_{4}[3,7]$ and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}[6]$-and led to the proposal [2] that one of the protons b that should be at the side of the double-well potential closer to the Tl^{2+} ion goes to the farther well, thus compensating the excess charge. This displacement of one proton breaks the C_{2} symmetry of the site and this is revealed in the EPR spectra by the observation of two lines labelled ' and ", instead of just one.

The variation of the spectrum with temperature was observed for the magnetic field in the ac plane at 60° from a; in this direction the splitting of the lines A_{+}^{\prime} and $\mathrm{A}_{+}^{\prime \prime}$ is large and there is no interference from other lines. At low temperatures $(25 \mathrm{~K})$ a faint line is observed between the two lines and its intensity is constant as the temperature is increased. At about 80 K the intensity of this intermediate line grows and the intensity of the lines A_{+}^{\prime} and $\mathrm{A}_{+}^{\prime \prime}$ decreases, drastically modifying the spectrum.

According to our model [3], described briefly in section 1, this intermediate line corresponds to centres Tl^{2+}, which preserve the symmmetry of the site, and $T^{*} \sim 80 \mathrm{~K}$ is the temperature where the three wells in the configurational potential of thalliumproton coupling have the same depth. These results are consistent with our previous

Table 1. Principal values and direction cosines of g and A tensors of $\mathrm{RbH}_{2} \mathrm{AsO}_{4}: \mathrm{Tl}^{2+}$. The x principal axis is directed nearly along the line connecting the K^{+}site to a b proton.

	Principal values		
	g	$\begin{aligned} & A \\ & (\mathrm{MHz}) \end{aligned}$	Direction cosines (α, β, γ)
149 K	1.994	104990	$x:(1,0,0)$
	1.994	104990	$y:(0,1,0)$
(A)	1.985	104220	$z:(0,0,1)$
25 K	1.991	102088	$x:(0.879,-0.377,-0.294)$
	1.998	102867	$y:(0.387,-0.922,-0.025)$
(A_{+}^{\prime})	1.984	101436	$z:(0.280,-0.092,0.956)$
Line connecting K^{+}site to b proton			(0.786, -0.558, -0.266)

measurements with othercrystals of the KDP family, the only difference being that the C_{2} symmetric centre is observed in $\mathrm{RbH}_{2} \mathrm{AsO}_{4}$ even at very low temperatures.

For the magnetic field oriented along the $a^{*} b$ direction, only two lines are observed (figure 2), corresponding to centres $\left(\mathrm{A}_{+}^{\prime}, \mathrm{A}_{+}^{\prime \prime}, \mathrm{B}_{+}^{\prime}, \mathrm{B}_{+}^{\prime \prime}\right.$) and ($\mathrm{A}_{-}^{\prime}, \mathrm{A}_{-}^{\prime \prime}, \mathrm{B}_{-}^{\prime}$, $B_{-}^{\prime \prime}$), which belong to ferroelectric domains + and - , respectively. The splitting of the doublet is then expected to be, in a first approximation, proportional to the spontaneous polarisation, which is the order parameter of the ferroelectric transition. Figure 3 shows the variation of this splitting with temperature; it goes discontinuously to zero at $T_{\mathrm{c}}=$ 110 K , indicating the first-order character of the transition. Measurements of spontaneous polarisation in crystals of the KDP family indicate that it saturates rapidly below T_{c}, unlike what happens with the splitting. It is thought that the local polarisation of the lattice by the Tl^{2+} defect is responsible for this different behaviour.

A superhyperfine (SHF) structure is observed on the lines corresponding to the centres $\mathrm{A}_{-}^{\prime}, \mathrm{A}_{-}^{\prime \prime}$ and A_{-}, when the magnetic field (H) is in the $a b$ plane oriented at approximately 20° from axis a. A doublet is visible at low temperatures ($T<70 \mathrm{~K}$) and a nine-line multiplet is observed from 85 to 100 K , approximately. A rotation of H from that privileged direction causes a decrease in the intensity of the structure and it disappears completely for a rotation of 14° on either side.

To interpret these experimental results, we must add to the spin Hamiltonian (equation (1)) the superhyperfine interaction term

$$
\begin{equation*}
\mathscr{H}_{\mathrm{SHF}}=S . A_{\mathrm{n}} \cdot I_{\mathrm{n}} . \tag{2}
\end{equation*}
$$

We remark that the SHF interaction associated with a neighbouring nuclear spin I_{n} is larger if the angle between the applied magnetic field and the line that links the defect and the nuclear spin I_{n} becomes smaller. The As nucleus cannot be responsible for this SHF structure since no structure is seen when H is directed along the c crystal axis, where the nearer As nucleus lies. The interaction with the proton should be more important than with protons a because the direction Tl^{2+}-proton is at 15° from the plane $a b$ and

Figure 3. Temperature dependence of the splitting of lines corrresponding to + and - polarisation (see figure 2). The spectrum is observed on the $a b$ plane at 45° and the splitting of the doublet is measured as a function of temperature. The splitting goes discontinuously to zero at 110 K , indicating the first-order character of the ferroelectric transition.

Figure 4. The shf structure on the line corresponding to the A_{-}defect is seen at $T=99 \mathrm{~K}$ for H on the $a b$ plane at 20° from the a axis. The line on the right side, without structure, corresponds to centre A_{+}, which is not privileged. The inset shows the computer simulation, with nine lines plus a broad line.

Figure 5. The shf structure on the line corresponding to the A_{-}defect is seen at $T=27.7 \mathrm{~K}$ for H on the $a b$ plane at 20° from the a axis. The line on the right side, without structure, corresponds to centre \mathbf{A}_{+}, which is not privileged. The inset shows the computation simulation, with five lines plus a broad line.
the direction Tl^{2+}-proton a is at 50° from the same plane. There are four nearestneighbour Rb nuclei at a distance of $4.3 \AA$ from the Tl^{2+} and the angle of the direction $\mathrm{Tl}^{2+}-\mathrm{Rb}^{+}$is at 25° from the ab plane. The ${ }^{37} \mathrm{Rb}$ isotope ($I=\frac{3}{2}, 27.3 \%$ abundant) has a magnetic moment of $2.74 \mu_{\mathrm{B}}$, comparable to the proton magnetic moment, while the ${ }^{35} \mathrm{Rb}$ isotope ($I=\frac{\overline{5}}{2}, 72.8 \%$ abundant) has a magnetic moment that is less than half this value and therefore will be neglected.

Let $\gamma\left({ }^{35} \mathrm{Rb}\right)$ and $\gamma(\mathrm{p})$ be the shf coupling constants of the defect with the nearestneighbour ${ }^{35} \mathrm{Rb}$ nuclei and the bonding protons, respectively. For H lying on the $a b$ plane, the largest value of $\gamma\left({ }^{35} \mathrm{Rb}\right)$ will occur for H along the crystal a axis and the largest value of $\gamma(\mathrm{p})$ will occur for H at 33° off the a axis. It is reasonable to assume that at an intermediate direction $\gamma\left({ }^{35} \mathrm{Rb}\right)=\gamma(\mathrm{p})$. In this direction the shF structure will correspond to an equal coupling to two protons and two ${ }^{35} \mathrm{Rb}$ and will yield $2 \times\left(2 \times \frac{3}{2}+2 \times \frac{1}{2}\right)+1=9$ lines. The coupling to two neighbouring ${ }^{37} \mathrm{Rb}$ or one ${ }^{35} \mathrm{Rb}$ and one ${ }^{37} \mathrm{Rb}$ and two protons will yield a larger number of weaker lines, which would be observed as a broad line added to the nine-line structure.

This is what is observed experimentally. Figure 4 shows the observed spectrum for H in the $a b$ plane, at 20° from the a axis, at 99 K , and the computer simulated spectrum.

At temperatures below $T \simeq 80 \mathrm{~K}$ the nine-line shf structure disappears. At these temperatures the defects with C_{1} symmetry become more stable than the defects with C_{2} symmetry. One of the protons is repelled to the farther well in the bond, and probably the Tl^{2+} ion is displaced to accommodate the new charge distribution. The SHF interaction is now effective with one proton and one Rb nucleus. Figure 5 shows the observed and simulated SHF structures at low temperatures ($T<70 \mathrm{~K}$).

In the paraelectric phase ($T>110 \mathrm{~K}$) the rapid movement of protons from one well to the other in the bond completely destroys the SHF structure.

3. Conclusions

In concluding, we remark that this model explains reasonably well the SHF structure observed in the three temperature ranges ($T<T^{*}, T^{*}<T<T_{\mathrm{c}}$ and $T>T_{\mathrm{c}}$) and is compatible with the temperature-dependent three-minima potential well for Tl^{2}-proton coupling, proposed previously [3] to explain the EPR spectra.

Acknowledgments

We would like to thank R A Nogueira for his assistance in computational calculations, and the Brazilian agencies CNPq, FINEP and CPq (UFMG) for their support.

References

[1] Efimov V N, Silkin N I, Stepanov V G and Trofanchuk L A 1979 Sov. Phys.-Solid State 21 1464-5
[2] Gonzaga L V, Sampaio J F, Ribeiro G M, Chaves A S, Gazzinelli R and Blinc R 1982 J. Phys. Soc. Japan 51 540-4
[3] Alves E S, Sampaio J F, Gazzinelli R, Chaves A S and Ribeiro G M 1987 J. Phys. Soc. Japan 56 4551-8
[4] Bogotava T B, Salikov I Kh, Stepanov V G and Trofanchulk LA 1983 Sov. Phys.-Solid State 25 1591-2
[5] Grinberg E S, Stepanov V G and Trofanchuk L A 1986 Sov. Phys.-Solid State 28 648-51
[6] Domingues D N, Chaves A S, Ribeiro G M and Gazzinelli R 1983 Solid State Commun. 47 665-8
[7] Echternach P M, Ribeiro G M, Gazzinelli R and Chaves A S 1984 Solid State Commun. 52 571-4
[8] Alves E S, Gazzinelli R, Sampaio J F, Ribeiro G M and Chaves A S 1986 Rev. Brasil. Fis. 16 295-305

